+3.3V 145MHz 的 24bit 平板显示器(FPD)LVDS 信号接收器

产品简述

MS90C386B/MS90C386P/MS90C386 芯片能够将 4 通道的低压差分信号(LVDS)转换成 28bit 的 TTL 数据。时钟通道与数据通道并行输入。在时钟频率为 145MHz 时,24bit 的 RGB 数据、3bit 的 LCD 时序数据和 1bit 的控制数据以 1015Mbps 的速率在每个 LVDS 数据通道中传输。输入时钟频率为 145MHz 时,数据的传输速率507.5Mbytes/sec。此款芯片配合 MS90C385B,是解决高带宽、高速 TTL 信号层面的电磁干扰和电缆长度问题的理想产品。

TSSOP56

主要特点

- 频率范围: 20-145MHz 时钟信号
- 较少的总线减少了连线尺寸和费用
- 供电电源 3.3V
- 低功耗模式
- 支持 VGA、SVGA、XGA、SXGA
- 4.06Gbps 数据吞吐量
- 507.5Megabytes/sec 带宽
- 减小 LVDS 摆幅来减小电磁干扰(300mV LVDS 摆幅)
- PLL 不需要外部结构
- 遵循 TIA/EIA-644 LVDS 标准
- TSSOP56 封装

应用

- 监控摄像头
- 台式机/笔记本
- 打印机

产品规格分类

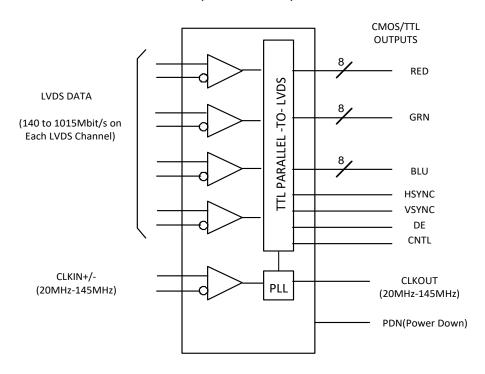
产品	封装形式	丝印名称
MS90C386B	TSSOP56	MS90C386B
MS90C386P	TSSOP56	MS90C386P
*MS90C386	TSSOP56	MS90C386

注: MS90C386和MS90C386B为时钟下降沿有效, MS90C386P为时钟上升沿有效。

^{*}暂未提供此封装。若有需要,请联系杭州瑞盟销售中心

管脚图

RXOUT22	1		56	VCC
RXOUT23	2		55	RXOUT21
RXOUT24	3		54	RXOUT20
GND	4		53	RXOUT19
RXOUT25	5		52	GND
RXOUT26	6		51	RXOUT18
RXOUT27	7		50	RXOUT17
LVDS GND	8		49	RXOUT16
RXINO-	9		48	VCC
RXIN0+	10		47	RXOUT15
RXIN1-	11		46	RXOUT14
RXIN1+	12		45	RXOUT13
LVDS VCC	13	MS90C386B	44	GND
LCDS GND	14	MS90C386P	43	RXOUT12
RXIN2-	15	MS90C386	42	RXOUT11
RXIN2+	16		41	RXOUT10
RXCLKIN-	17		40	VCC
RXCLKIN+	18		39	RXOUT9
RXIN3-	19		38	RXOUT8
RXIN3+	20		37	RXOUT7
LVDS GND	21		36	GND
PLL GND	22		35	RXOUT6
PLL VCC	23		34	RXOUT5
PLL GND	24		33	RXOUT4
PDN	25		32	RCOUT3
RXCLKOUT	26		31	VCC
RXOUT0	27		30	RXOUT2
GND	28		29	RXOUT1



管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
10, 9	RXINO+, RXINO-	LVDS I	
12, 11	RXIN1+, RXIN1-	LVDS I	LVDC 关八粉·দ\$~)
16, 15	RXIN2+, RXIN2-	LVDS I	LVDS 差分数据输入
20, 19	RXIN3+, RXIN3-	LVDS I	
18, 17	RXCLKIN+, RXCLKIN-	LVDS I	LVDS 差分时钟输入
27, 29, 30, 32,	RXOUTO ~ RXOUT6	0	
33, 34, 35	NACOTO * NACOTO		
37, 38, 39, 41,	RXOUT7 ~ RXOUT13	0	TTL 级数据输出。
42, 43, 45	KX0017 ~ KX00113		包括: 8 RED, 8 GREEN, 8 BLUE, 4 个控制
46, 47, 49, 50,	RXOUT14 ~ RXOUT20	0	信号(HSYNC, VSYNC, DE, CNTL)
51, 53, 54	NX00114 ~ NX00120		H 3 (131NC, V31NC, DE, CNTE)
55, 1, 2, 3, 5,	RXOUT21 ~ RXOUT27	0	
6, 7	KXOU121 ~ KXOU127		
26	RXCLKOUT	0	TTL 级时钟输出。
25	PDN	I	TTL 级输入。为高正常工作,为低低功耗。
31, 40, 48, 56	VCC	-	输入级电源,典型值 3.3V
28, 36, 44,	CND		於入紅女老山
52, 4	GND	<u>-</u>	输入级参考地
13	LVDS VCC	-	LVDS 电源,典型值 3.3V
8, 14, 21	LVDS GND	-	LVDS 参考地
23	PLL VCC	-	PLL 电源,典型值 3.3V
22, 24	PLL GND	-	PLL 参考地

内部框图

MS90C386B/MS90C386P/MS90C386

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

山 (灰)(太) (下)			
参数	符号	额定值	单位
电源电压	Vcc	-0.3 ~ 4	V
CMOS/TTL 输入电压		-0.3 ~ (Vcc+0.3)	V
CMOS/TTL 输出电压		-0.3 ~ (Vcc+0.3)	V
LVDS 驱动输出电压		-0.3 ~ (V _{CC} +0.3)	V
工作温度	T _A	-40 ~ 100	℃
最大功耗 (25 ℃)		1.4	W
结温	TJ	-55 ∼ 1 50	°
存储温度	T _{STG}	-65 ~ 1 50	$^{\circ}$
焊接温度(无铅)	T _{PEAK}	260	°
焊接温度处于 T _{PEAK} 时持续时间(无铅)	T _P	10	S

电气参数

除非另外说明, 所有电源电压=3.3V±10%, T_A=25 ℃。

电气特性

参数	符号	测试条件	最小	典型	最大	单位
输入高电平	VIH		2.0		Vcc	V
输入低电平	VIL		GND		0.8	V
输出高电平	Vон	I _{OH} = -0.4mA	2.7	3.3		V
输出低电平	Vol	I _{OL} = 2mA		0.06	0.3	V

直流特性

参数	符号	条件	最小	典型	最大	单位
差分输入高限	V _{TH}				+100	mV
差分输入低限	V _{TL}	$V_{OC} = +1.2V$	-100			mV
输入电流	lin	$V_{IN} = +2.4 V/0 V, V_{CC} = 3.6 V$			±10	μΑ

电源电流

参数	符号	条件	典型	最大	单位
接收器供电电流	166	CL = 8pF, f = 85MHz, V _{CC} = 3.3V	60		
(16 Grayscale)	ICC _{RG}	16 Grayscale Pattern	60		mA
接收器供电电流	166	CL = 8pF, f = 85MHz, Vcc = 3.3V	0.5		4
(Worst Case)	ICC _{RW}	Worst Case Pattern	95		mA
接收器供电电流	166	DDM OV	40		
(Power Down)	ICC _{RP}	PDN=0V	10		μΑ

开关特性

参数		符号	最小	典型	最大	单位
输出时钟周期		T _{RCP}	6.90	Т	50	ns
输出时钟高电平时间		T _{RCH}	4.5	5.0	7.0	ns
输出时钟低电平时间		T_RCL	4.0	5.0	6.5	ns
时钟输出建立时间	1001411-	T _{RS}		5.0		ns
时钟输出保持时间	100MHz	T_RH		5.0		ns
输出从低到高时间		T _{TLH}		3.0		ns
输出从高到低时间		T _{THL}		3.0		ns
时钟输出与差分时钟信号	延迟	T _{RCD}		7.0		ns
接收数据位 0		T_{RDP5}	-0.4	0	+0.4	ns
接收数据位1		T _{RDP6}	T/7-0.4	T/7	T/7+0.4	ns
接收数据位 2		T _{RDP0}	2T/7-0.4	2T/7	2T/7+0.4	ns
接收数据位 3	145MHz	T _{RDP1}	3T/7-0.4	3T/7	3T/7+0.4	ns
接收数据位 4		T _{RDP2}	4T/7-0.4	4T/7	4T/7+0.4	ns
接收数据位 5		T _{RDP3}	5T/7-0.4	5T/7	5T/7+0.4	ns
输出数据位 6		T _{RDP4}	6T/7-0.4	6T/7	6T/7+0.4	ns
锁相环设置时间		T _{TPLLS}	-	-	10	ms

交流时序图

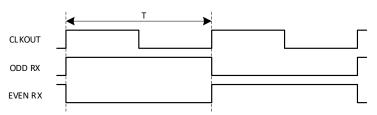


图 1. 测试模板"Worst Case Pattern"

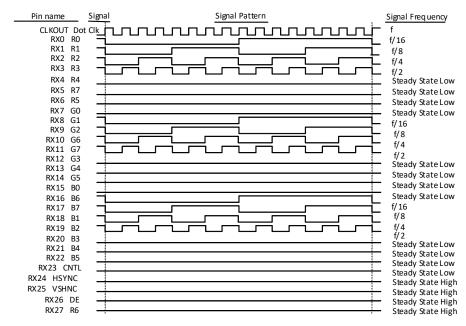
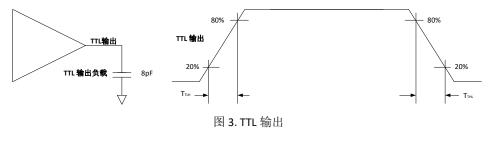



图 2. 测试模板"16 Grayscale Test Pattern"

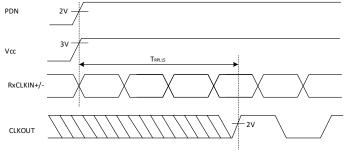
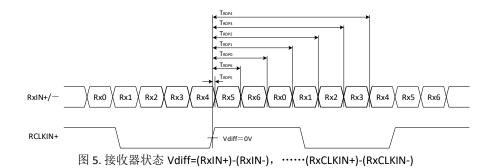



图 4. 锁相环设置时间

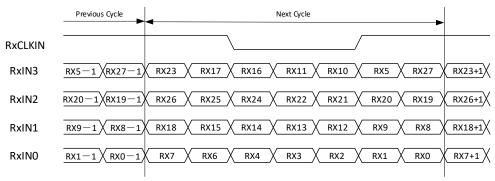


图 6. 并行 TTL 输入数据与 LVDS 输出数据匹配关系

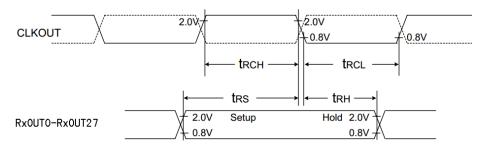
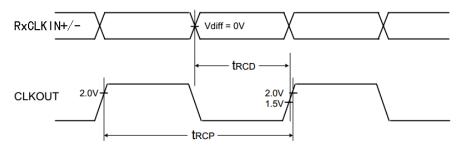
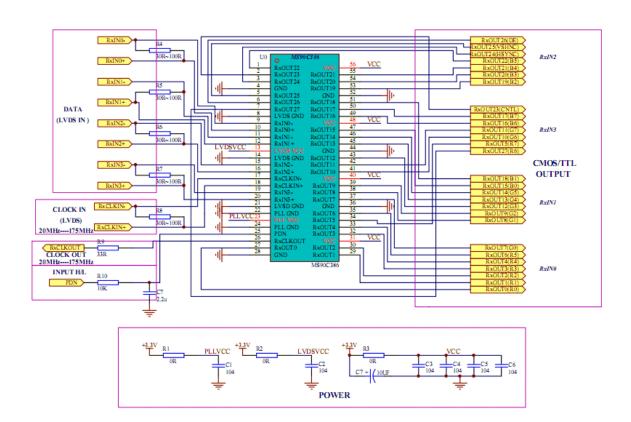
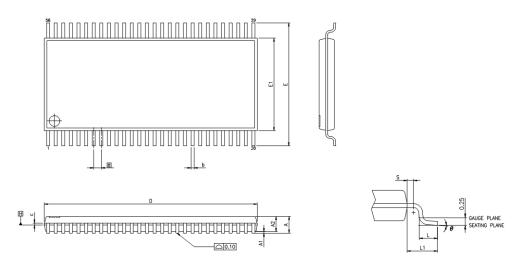


图 7. 上升、下降时间与高电平、低电平保持时间

(MS90C386 和 MS90C386B 参看 CLKOUT 的实线; MS90C386P 参看 CLKOUT 的虚线)


图 8. 输入时钟与输出时钟间延迟

典型应用图

封装外形图

TSSOP56

ht. 5	尺寸(毫米)					
符号	最小	典型	最大			
А	-	-	1.20			
A1	0.05	-	0.15			
A2	0.80	1.00	1.05			
b	0.17	-	0.27			
С	0.09	-	0.20			
D	13.90	14.00	14.10			
E1	6.00	6.10	6.20			
E		8.10BSC				
e		0.50BSC				
L1	1.00REF					
L	0.45	0.60	0.75			
S	0.20	-	-			
θ	0°	-	8°			

印章与包装规范

1. 印章内容介绍

产品型号: MS90C386B、MS90C386P、MS90C386

生产批号: XXXXXX

2. 印章规范要求 采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS90C386B	TSSOP56	3000	1	3000	8	24000
MS90C386P	TSSOP56	3000	1	3000	8	24000
MS90C386	TSSOP56	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路1号高新软件园9号楼701室

http://www.relmon.com