18bit、两通道差分输入内置基准模数转换器

主要特点

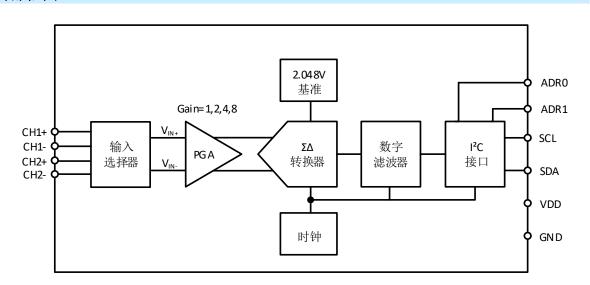
- 18bit、2 通道差分输入
- 差分输入范围: ±VREF
- I²C接口
- 片上基准: 2.048V±0.05%
- 基准温度漂移: 25ppm/°C
- 内置 PGA: 1 到 8 倍
- 内置振荡器
- 18 位无失码分辨率
- INL (积分非线性误差): 0.01%
- 单次转换功能
- 可编程输出速率: 3.75SPS 到 240SPS
- 工作电压范围: 2.7V 到 5.5V
- 低功耗: 290µA@5V

产品简述

MS5115M 是一款高精度 18bit 模数转换器,具有 2 组差分输入,高达 18bits 的分辨率。内部集成 2.048V 基准源,差分输入范围达到±2.048V。MS5115M 使用了 I²C 兼容接口,并有 2 个地址管脚,可以让用户选择 8 个 I²C 从地址。电源电压范围为 2.7V 到 5.5V。

MS5115M 转换速率为 3.75、15、60 或 240SPS,集成可编程增益放大器,其增益最高可到 8 倍。在单次转换模式中,MS5115M 在转换结束后会自动进入省电状态,减小功耗。

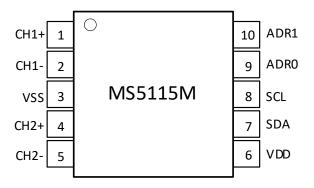
MS5115M 可用在高精度测量以及对空间、功耗有一定要求的应用场合中,如:手持仪器、工业控制和智能变送器。


应用

- 手持仪器
- 工业级控制
- 智能变送器
- 工业自动化
- 温度测量

产品规格分类

产品	封装形式	丝印名称
MS5115M	MSOP10	MS5115M


内部框图

目录

, , , , , ,	
1. 主要特点	1
2. 产品简述	1
3. 应用	1
4. 产品规格分类	1
5. 内部框图	1
6. 目录	2
7. 管脚图	3
8. 管脚说明	3
9. 极限参数	4
10. 推荐工作条件	4
11. 电气参数	5
12. 功能描述	7
12.1模数转换器	7
12.2输入选择器	7
12.3电压基准	7
12.4输出码计算	7
12.5时钟振荡器	8
12.6输入阻抗	8
12.7混叠	8
12.8工作模式	8
12.9复位和上电	8
12.10 I ² C接口	9
12.10.1串行总线地址	11
12.10.2 I ² C总呼叫	12
12.10.3 I ² C数据速率	12
12.11结果寄存器	12
12.12配置寄存器	12
12.13读操作	14
12.14写操作	15
12.15广播锁存模式	15
12.16广播复位模式	15
12.17高速模式	16
13. 典型应用图	17
14. 封装外形图	19
15. 印章与包装规范	20
16. 声明	
17. MOS电路操作注意事项	22

管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	CH1+	ı	差分输入通道1正输入端
2	CH1-	ı	差分输入通道 1 负输入端
3	VSS	-	地
4	CH2+	ı	差分输入通道 2 正输入端
5	CH2-	ı	差分输入通道 2 负输入端
6	VDD	-	电源
7	SDA	1/0	串行数据
8	SCL	I	串行时钟
9	ADR0	I	I ² C 从地址选择 1
10	ADR1	I	I ² C 从地址选择 2

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
供电电压	V _{DD}	-0.3 ~ 6	V
输入电流	l _{IN}	100mA,瞬间电流 10mA,持续电流	mA
模拟输入(ADRO、ADR1 到 Vss)	V _{IN}	-0.3 ~ V _{DD} +0.3	V
SDA、SCL 电压到地	V	-0.5 ~ 6	V
最大结温	T _{JMAX}	150	°C
存储温度	T _{STG}	-65 ∼ 1 50	°C
焊接温度(10s)	Т	260	°C

推荐工作条件

参数	符号	测试条件	最小值	典型值	最大值	单位
工作温度	T _A	V _{DD} =2.7V到5.5V	-40		125	°C

电气参数

若无特别说明,测试条件: VDD=5V。

参数	测试 条件	最小值	典型值	最大值	单位
	模拟输	入			
满幅输入电压范围	(V _{IN+})-(V _{IN-})		±2.048/PGA		V
模拟输入电压	V _{IN+} 到 V _{SS} , V _{IN-} 到 V _{SS}	V _{SS} -0.2		V _{DD} +0.2	V
差分输入阻抗			2.8/PGA		ΜΩ
	PGA=1		3.5		ΜΩ
共模输入阻抗	PGA=2		3.5		МΩ
大侠那八四九	PGA=4		1.8		МΩ
	PGA=8		0.9		ΜΩ
	系统参	数	1		T
	DR=240SPS	12		12	Bits
八 並玄	DR=60SPS	14		14	Bits
分辨率与无失码精度	DR=15SPS	16		16	Bits
	DR=3.75SPS	18		18	Bits
	12bits 模式	180	240	308	SPS
输出速率	14bits 模式	45	60	77	SPS
制山坯 华	16bits 模式	11	15	20	SPS
	18bits 模式	2.75	3.75	5.1	SPS
积分非线性误差	DR=11,PGA=1,结束点 ¹		±0.004		% of FSR ²
	PGA=1		1	3	mV
失调误差	PGA=2		1	3	mV
大 则	PGA=4		1	3	mV
	PGA=8		1	3	mV
	PGA=1		1.2		μV/°C
失调温漂	PGA=2		0.6		μV/°C
大	PGA=4		0.3		μV/°C
	PGA=8		0.3		μV/°C
	PGA=1		800		μV/V
生调 火 ソ	PGA=2		400		μV/V
失调 VS. V _{DD}	PGA=4		200		μV/V
	PGA=8		150		μV/V

参数	测试条件	最小值	典型值	最大值	单位
	系统参数			,	
增益误差			±0.05	±0.2	%
PGA 增益匹配误差 3	任意两个增益匹配		0.02		%
增益误差温漂			25		ppm/°C
增益 VS. V _{DD}			80		ppm/V
+++++++++++++++++++++++++++++++++++++++	直流输入,PGA=8		105		dB
共模抑制比	直流输入,PGA=1		100		dB
	数字输入/输出				
输入高电平电压		0.7×V _{DD}		V _{DD} +0.5	V
输入低电平电压		V _{SS} -0.5		0.3×V _{DD}	V
输出低电平电压	I _{OL} =3mA	Vss		0.4	V
输入高电平峰值电流				10	μА
输入低电平峰值电流		-10			μА
	电源参数				
工作电压	V _{DD}	2.7		5.5	V
.1. 17.1. 14	关断状态		0.05	2	μА
电源电流	工作状态		290	350	μΑ
_1 +<	V _{DD} =5.0V		1.45	1.75	mW
力耗	V _{DD} =3.0V		0.87		mW

注:

- 1. 满幅度的 99%。
- 2. FSR=满幅度量程=2×2.048/PGA=4.096/PGA。
- 3. 包括 PGA 和基准的所有误差。

功能描述

MS5115M 是一个 18 位、差分、Σ-Δ 型模数转换器,其设计简单、极易配置的特点使得用户很容易获得精确的测量值。

MS5115M 由一个带有可调增益的 Σ-Δ 模数转换器、一个 2.048V 的电压基准、一个时钟振荡器、一个数字滤波器和一个 I²C 接口组成,后面将对各组成部分进行详细说明。

模数转换器

MS5115M 的模数转换器核由一个差分开关电容 Σ-Δ 调制器和一个数字滤波器组成。调制器测量 正、负模拟输入端的压差,并将其与基准电压相比较,在 MS5115M 中基准电压为 2.048V。数字滤波器从调制器接收高速码流,并输出与输入电压成比例的数字信号。

输入选择器

MS5115M 有一个多输入选择器,可以提供2组差分输入。配置寄存器控制输入选择器的设置。

电压基准

MS5115M 内置一个 2.048V 的片内电压基准, 无需外部基准。

输出码计算

MS5115M 输出码的位数取决于更新速率,如表 1 所示。

表 1. 最小和最大码

农工 联门作取八门							
更新速率	更新速率 位数 最小码		最大码				
3.75SPS	18	-131072	131071				
15SPS	16	-32768	32767				
60SPS	14	-8192	8191				
240SPS	12	-2048	2047				

MS5115M 输出码的格式为二进制补码,右对齐且经过符号扩展。不同输入电平的输出码见表 2。 表 2. 针对不同输入信号的输出码

- Marie 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
T 30 14 3									
更新速率	-2.048V ¹	-1LSB	0 (理想)	+1LSB	+2.048V				
3.75SPS	FE0000 _H	FFFFFFH	000000 _H	000001 _H	01FFFF _H				
15SPS	8000 _H	FFFFH	0000H	0001 _H	7FFF _H				
60SPS	E000H	FFFFH	0000H	0001 _H	1FFF _H				
240SPS	F800 _H	FFFFH	0000 _H	0001 _H	07FF _H				

注 1: 为差分输入,不要使 MS5115M 的绝对输入电压低于-200mV。

输出码可由以下表达式计算出:

MS5115M 最大码是 2ⁿ⁻¹-1, 而最小码是-1×2ⁿ⁻¹。

时钟振荡器

MS5115M 内置时钟振荡器,该振荡器驱动调制器和数字滤波器。无需外部时钟。

输入阻抗

MS5115M 输入级采用开关电容。等效电阻值取决于电容值和电容的开关频率。电容值取决于可编程增益放大器 (PGA)的设置,时钟由片内时钟振荡器产生。典型工作频率为 275kHz。

共模和差分输入阻抗不同,详情请见"电气参数"。

当外接高输出阻抗输入源,输入端需要外接 buffer。

混叠

当输入信号频率超过更新速率的一半,会产生混叠。为防止混叠的产生,必须限制输入信号的带宽。MS5115M 的数字滤波器可在一定程度上衰减高频率的噪声,但其 sinc 滤波器不能完全替代抗混叠滤波器。对于少数应用,还是需要外部滤波。

在设计输入滤波器时, 应考虑到滤波器和 MS5115M 输入之间的阻抗匹配。

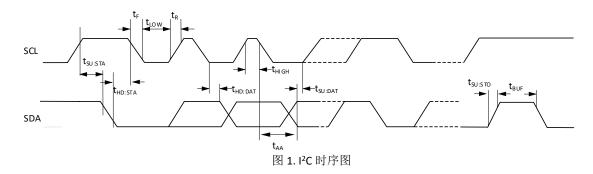
工作模式

MS5115M 有两种转换模式:连续转换和单次转换。

在连续转换模式中,每次转换完成,MS5115M 都将结果存入结果寄存器,并立即开始下一次转换。

在单次转换模式中,MS5115M 会等待配置寄存器中的DRDY位被置为 1。DRDY位被置为 1 后,MS5115M 开始转换。转换完成后,MS5115M 将结果存入结果寄存器中,并复位DRDY位为 0,进入省电模式。

从连续转换模式切换到单次转换模式时,MS5115M 将完成当前转换,并复位 DRDY位为 0,进入省电模式。


复位和上电

在上电时,自动执行一次复位,配置寄存器中的所有位设置为默认值。

I²C 接口

MS5115M 通过 I^2C 接口通信。图 1 为 I^2C 时序图,表 3 列出了相关参数。

除非特别说明,否则所有限制条件为: T_A=-40°C 到+125°C, VDD=+2.7V 到+5.0V, VSS=0V,CHn+=CHn-=V_{REF}/2。

表 3. 时序图的相关定义

	表 3. 时序图的相关定义							
参数	符号	最小	标准	最大	单位	环境		
标准模式 (100kHz)								
时钟工作频率	f _{SCLK}	0		100	kHz			
时钟高电平周期	t _{HIGH}	4000			ns			
时钟低电平周期	t _{LOW}	4700			ns			
时钟/数据上升时间	t _R			1000	ns	从 VIL 到 VIH(注 1)		
时钟/数据下降时间	t _F			300	ns	从 VIH 到 VIL (注 1)		
起始条件的保持时间	t hd:dat	4000			ns	在这个周期后,第一个 时钟脉冲产生		
起始条件的建立时间	t _{SU:DAT}	4700			ns			
数据保持时间	t _{HD:DAT}	0		3450	ns	注 3		
数据建立时间	t _{SU:DAT}	250			ns			
停止条件的建立时间	t _{SU:STO}	4000			ns			
在时钟之后输出有效时间	taa	0		1200	ns	注 2, 注 3		
总线空闲时间	tвиғ	1300				停止条件到下一次起始 条件的时间		
快速模式 (400kHz)								
时钟工作频率	f _{SCLK}	0		400	kHz			
时钟高电平周期	t HIGH	600			ns			
时钟低电平周期	t _{LOW}	1300			ns			
时钟/数据上升时间	t _R	20+0 .1Cb		300	ns	从 VIL 到 VIH(注 1)		
时钟/数据下降时间	t _F	20+0 .1Cb		300	ns	从 VIH 到 VIL(注 1)		

参数	符号	最小	标准	最大	单位	环境
起始条件的保持时间	t _{HD:DAT}	600			ns	在这个周期后,第一个 时钟脉冲产生
起始条件的建立时间	t _{SU:DAT}	600			ns	
数据保持时间	t _{HD:DAT}	0		900	ns	注 4
数据建立时间	t _{su:dat}	100			ns	
停止条件的建立时间	t _{su:sto}	600			ns	
在时钟之后输出有效时间	t _{AA}	0		1200	ns	注 2, 注 3
总线空闲时间	tвиғ	1300				停止条件到下一次起始 条件的时间

注:

- 1. 这个数据是通过计算得到,不是 100%测试得到。
- 2. 这个规范不是 I²C 规范的一部分,只是通过数据保持时间加数据上升/下降时间 t_{AA}=t_{HD:DAT}+t_R/t_F。
- 3. 如果此参数太短,可能会对总线上的其他设备造成意外启动或停止。如果该参数太长,则会影响时钟低电平时间(t_{Low})。
- **4.**对于数据输入,如果数据太长,数据输入建立时间($t_{SU:DAT}$)或时钟低电平时间(t_{Low})可能被影响。对于数据输出,这个数据是计算的,测试是通过 t_{AA} 间接测得。

参数	符号	最小	标准	最大	单位	环境
高速模式(3.4MHz)						
		0		3.4	MHz	C _b =100pF
时钟工作频率	f _{SCLK}	0		1.7	MHz	C _b =400pF
		60			ns	C _b =100pF,f _{SCLK} =3.4MHz
时钟高电平周期	t _{нібн}	120			ns	C _b =400pF,f _{SCLK} =1.7MHz
		160			ns	$C_b=100pF$, $f_{SCLK}=3.4MHz$
时钟低电平周期	t _{LOW}	320			ns	C _b =400pF,f _{SCLK} =1.7MHz
时钟上升时间				40	ns	从 VIL 到 VIH Cb=100pF,fscLK=3.4MHz
(注1)	t _R			80	ns	从 VIL 到 VIH C _b =400pF,f _{sCLK=1.7MHz}
时钟下降时间				40	ns	从 VIH 到 VIL Cb=100pF,fsclk=3.4MHz
(注1)	t₅			80	ns	从 VIL 到 VIH C _b =400pF,f _{sCLK=1.7} MHz

参数	符号	最小	标准	最大	单位	环境
数据上升时间				80	ns	从 VIL 到 VIH C _b =100pF,f _{SCLK=3.4MHz}
(注1)	t r:dat			160	ns	从 VIL 到 VIH C _b =400pF,f _{SCLK} =1.7MHz
数据下降时间				80	ns	从 VIL 到 VIH C _b =100pF,f _{SCLK=3.4MHz}
(注1)	t _{f:DAT}			160	ns	从 VIL 到 VIH Cb=400pF,fsclK=1.7MHz
数据保持时间		0		70	ns	C _b =100pF,f _{SCLK} =3.4MHz
(注4)	thd:dat	0		150	ns	C _b =400pF,f _{SCLK} =1.7MHz
在时钟之后输出有效				150	ns	C _b =100pF,f _{SCLK} =3.4MHz
时间(注2,3)	t _{AA}			310	ns	C _b =400pF,f _{SCLK} =1.7MHz
起始条件保持时间	t hd:sta	160			ns	在这个周期后,第一个时钟脉 冲产生
起始条件建立时间	t su:sta	160			ns	
数据建立时间	t su:dat	10			ns	
停止条件的建立时间	t _{SU:STO}	600			ns	

注:

- 1. 这个数据是通过计算得到,不是 100%测试得到。
- 2. 这个规范不是 I²C 规范的一部分,只是通过数据保持时间加数据上升/下降时间 taa=thd:Dat+tr/tr。
- 3. 如果此参数太短,可能会对总线上的其他设备造成意外启动或停止。如果该参数太长,则会影响时钟低电平时间(t_{Low})。
- 4.对于数据输入,如果数据太长,数据输入建立时间(tsu:DAT)或时钟低电平时间(tLow)可能被影响。对于数据输出,这个数据是计算的,测试是通过 tAA 间接测得。

串行总线地址

对 MS5115M 进行读写,主机必须通过地址位对从机寻址。从机地址位包括 7 个地址位、1 个操作位。

MS5115M 有两个地址管脚,ADRO 和 ADR1,可以设置 I²C 的地址。这个管脚可以设置为逻辑低、逻辑高或悬空。通过两个管脚可以设置 8 个地址,如表 4 所示。在上电复位后,器件将对 ADRO 和 ADR1 管脚状态进行采样。

ADR0	ADR1	7 位从机地址位
0	0	1001000
0	悬空	1001001
0	1	1001010
1	0	1001100
1	悬空	1001101
1	1	1001110
悬空	0	1001011
悬空	1	1001111
悬空	悬空	无效

表 4. 地址管脚与从机地址关系

I2C 总呼叫

如果地址位 8 位都为 0 时,MS5115M 响应总呼叫。器件应答总呼叫并响应第二个字节的命令。如果该命令为 04h,MS5115M 将只锁存地址管脚 ADR0 和 ADR1 的状态,并不复位配置寄存器。

I2C 数据速率

I²C 总线有三种速度方式:标准方式,允许最高 100kHz 的时钟频率。快速方式,允许最高 400kHz 的时钟频率。高速方式,允许最高 3.4MHz 的时钟频率。

关于高速方式的更多信息,参考 I2C 规格说明。

结果寄存器

16 位的结果寄存器存储转换结果,采用二进制补码格式。在复位或上电之后,结果寄存器清 0,直到第一次转换完成。结果寄存器的格式如表 5 所示。

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

表 5. 结果寄存器

配置寄存器

8 位配置寄存器控制 MS5115M 的工作模式、更新速率和可编程增益放大器(PGA)。配置寄存器的格式如表 6 所示,默认设置是 8C_H。

表 6. 配置寄存器

Bit	7	6	5	4	3	2	1	0
Name	RDY	C1	C0	ō/c	S1	S0	G1	G0
Default	1	0	0	0	1	1	0	0

位 7: RDY

RDY位的含意取决于它是写入还是读出。

位 6-5: C1/C0

输入信号选择位。如表 7 所示,通过控制这两位,MS5115M 可以用来选择 2 个差分通道或 3 个以 CH2-为参考的单端输入通道。

C1 C0 VIN+ VIN-01 01 CH1+ CH1-1 0 CH2+ CH2-0 CH1-1 CH1+ 1 1 CH2+ CH2-

表 7. C1/C0 位

注1: 默认设置。

位 4: O/C

转换模式选择位。当 \overline{O}/C 为1时,选择单次转换模式;当 \overline{O}/C 为0时,选择连续转换模式。默认为0。

位 3-2: S1/S0

更新速率选择位,如表8所示。

表 8. S1/S0 位

农 5: 51/50 压								
DR1	DR0	更新速率	精度					
0	0	240SPS	12 位					
0	1	60SPS	14 位					
1	0	15SPS	16 位					
11	11	3.75SPS	18 位					

注1: 默认设置。

位 1-0: G1/G0

增益设置选择位,如表9所示。

表 9. G1/G0 位

	• •	
G1	G0	增益
01	01	1
0	1	2
1	0	4
1	1	8

注1:默认设置。

丰	10	写配置	1
1X	TU.	<i>→</i> 1 🖽 . 🖽	11/

R/W	_ O/C	RDY	操作
0	1	0	如果其他位保持不变,则保持之前操作
0	1	1	启动单次转换
0	0	0	启动连续转换
0	0	1	启动连续转换

表 11. 读配置位

R/W	ō/c	RDY	操作
1	1	0	单次转换模式下转换的新结果正在被读取。RDY保持低直到下一次命令写入
1	1	1	单次转换模式正在进行,转换结果尚未更新。 RDY 保持高直到转换完成
1	0	0	连续转换模式下转换的新结果正在被读取。RDY在读取转换数据后变高
1	0	1	连续转换模式下转换的结果已经被读取,下一个新的转换数据没准备好。 —— RDY保持高直到新一次转换完成

读操作

读取结果寄存器和配置寄存器的值。在先对 MS5115M 寻址,再从中读出 3 个字节。前 2 个字节是结果寄存器的值,第 3 个字节是配置寄存器的值。

可不读出配置寄存器,在读操作中允许读出的字节个数少于3个。

表 12. 各分辨率下的输出

分辨率	数据输出
18-bit ¹	MMMMMMD17D16(第一组数据)—D15~D8(第二组数据)—D7~D0(第
18-011	三组数据)一配置寄存器数据
16-bit²	D15~D8(第一组数据)—D7~D0(第二组数据)—配置寄存器数据
14-bit ³	MMD13~D8(第一组数据)—D7~D0(第二组数据)—配置寄存器数据
12-bit ⁴	MMMMD11~D8(第一组数据)—D7~D0(第二组数据)—配置寄存器数据

注:

- 1. D17 是 MSB (符号位), M 表示重复此符号位。
- 2. D15 是 MSB (符号位)。
- 3. D13 是 MSB (符号位), M 表示重复此符号位。
- 4. D11 是 MSB (符号位), M 表示重复此符号位。

MS5115M 的典型读操作的时序见图 2。

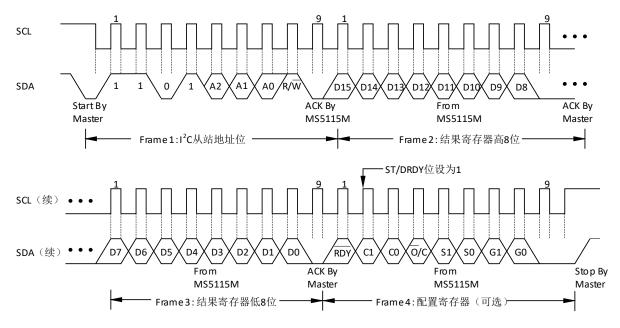


图 2. MS5115M 的读操作时序图

写操作

对配置寄存器进行写操作。先对 MS5115M 寻址,再写入一个字节,这个字节将被写入配置寄存器中。写过程中可以随时发出停止位

写入多个字节无效,将忽略第一个字节之后的任何字节。MS5115M 写操作的典型时序见图 3。

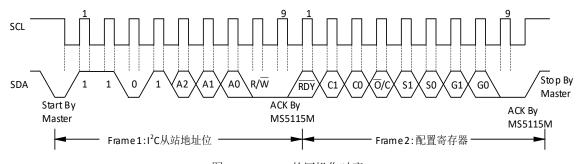


图 3. MS5115M 的写操作时序

广播锁存模式

如果第二个字节输入"0000 0100"(04h),则进入广播锁存模式。

锁存外部地址选择引脚(ADRO和 ADR1)的逻辑状态,但不执行复位。

广播复位模式

如果第二个字节输入"0000 0110"(06h),则进入广播锁存模式。

锁存外部地址选择引脚(ADRO和ADR1)的逻辑状态,并且复位所有配置寄存器和数据寄存器。

图 4. 广播模式地址

高速模式

必须要激活才能在高速模式下工作,激活方式是在 START 位后发 00001XXX。

接收到此命令后,设备打开高速模式滤波器,且在 SDA 和 SCL 总线上可以进行 3.4MHz 的通信高速模式在下一次收到停止条件后退出。

典型应用图

基本连接方法

对于多数应用而言, MS5115M 的典型基本连接图如图 4 所示。

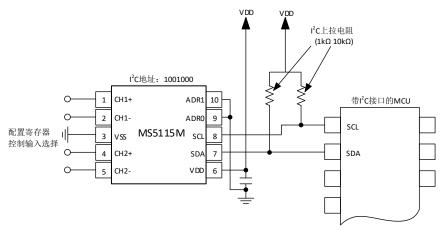


图 4. MS5115M 的典型基本连接方法

连接多个器件

一条 I^2C 总线可连接多个 MS5115M。使用 ADR1 和 ADR0 脚,MS5115M 可以设置为 8 种不同 I^2C 地址。如图 5 所示,三个 MS5115M 连接到同一条总线。一条 I^2C 总线上最多可以连接 8 个 MS5115M (使用不同状态的 ADR1 和 ADR0 脚进行控制)。

注意, I2C 总线仅需一组上拉电阻。

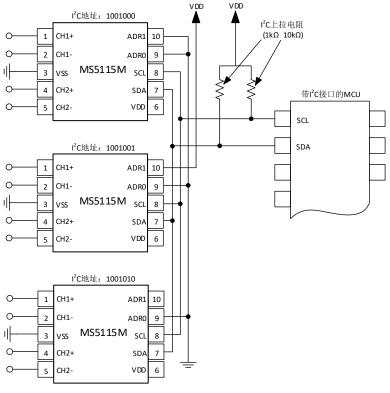
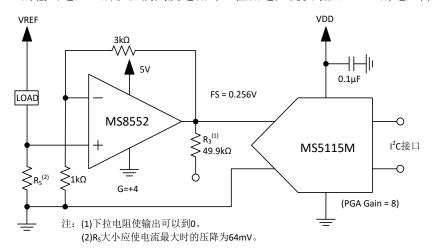
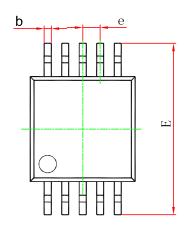
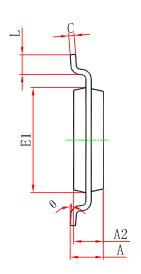


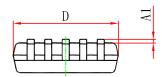
图 5. 连接多个 MS5115M

低端电流监控器

图 6 是低端电流监控器的电路图。该电路通过一个检流电阻来读取电压。此电阻上的电压可用低漂移的运放 MS8552 放大,放大结果由 MS5115M 读取。

建议 MS5115M 工作在 8 倍增益下,可以降低 MS8552 的增益。对于 8 倍增益而言,运放应提供最高不高于 0.256V 的输出电压,所以在满刻度电流时,检流电阻提供最大 64mV 的电压降。


图 6. 低端电流测量

封装外形图

MSOP10

http://	尺寸(毫米)	尺寸(英寸)		
符号	最小	最大	最小	最大	
А	-	1.100	-	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.330	0.007	0.013	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.50	BSC	0.020BSC		
E	4.750	5.050	0.187	0.199	
E1	2.900	3.100	0.114	0.122	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

印章与包装规范

1. 印章内容介绍

MS5115M xxxxxxx

产品型号: MS5115M 生产批号: XXXXXXX

2. 印章规范要求 采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS5115M	MSOP10	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com